搜索热:董洪标 晶间腐蚀
扫一扫 加微信
首页 > 新闻资讯 > 行业动态 > 消息正文
首页 > 新闻资讯 > 行业动态 > 消息正文
吉林大学吕中元教授和钱虎军教授课题组:计算机模拟为高分子/纳米粒子复合材料性能优化提供新思路
发布:blast_k   时间:2019/10/17 16:18:31   阅读:72 
分享到?#21525;?#24494;博 分享?#25945;?#35759;微博 分享到人人网 分享到 Google Reader 分享到百?#20154;?#34255;分享到Twitter

力学性能的好坏直接决定了高分子材料在各个领域中的应用前景。目前广为接受的理论普遍认为,玻璃态缠结高分子材料在小形变下的弹性形变区,体系中高分子链可以进行仿射形变,高分子链被拉长时由于构象熵的减少导致的熵弹性使材料表现出典型的胡克弹簧现象;随着应变的增加,熵弹性极限被打破,开始出现不可逆的应变局域化,例如在拉伸过程中的银纹现象,使得体系应力下降继而呈现应变软化现象;而随着银纹的产生,应力逐渐下降直至进入应力?#25945;?#21306;,在此区域随着拉伸的进行,银纹逐渐稳定增长;随着应变进一步增大,体系中各处均产生银纹,由于长链高分子拓扑缠结?#29616;兀?#38142;和链之间无法在拉伸形变?#36335;?#29983;相对滑移,当高分子链之间的拓扑缠结受到应力作用时体系出现应变硬化现象。在上述过程中,玻璃态高分子通常在超过弹性极限时产生纳米尺寸的空穴从而屈服,这种屈服被称为“空穴屈服”(cavitation yielding)现象。空穴的产生与生长方式直接决定了后续拉伸过程中银纹?#32435;?#38271;,从而影响到材料的宏观力学性质。

如何实现对高分子材料力学性能的定向设计与优化,在近年来已逐渐成为材料科学领域中的研究热点。而自发现并使用橡胶伊始,人们便发现在高分子材料中添加各种添料能有效改变高分子材料的力学性能。纳米尺度的添料因其具有高比表面积等特点,相对于传统添料,只需进行少量添加便能大幅?#32435;?#39640;分子材料的性能。近日,吉林大学超分子结构与材料国家重点实验室吕中元教授以及钱虎军教授课题组利用分子动力学模拟技术,系统研究了两分散接枝纳米粒子对玻璃态高分子材料力学性能进行调控的潜在应用价值。他们的模拟工作指出:在这类体系中,(a)接枝在纳米粒子表面、与体相高分子化学组分相同?#32435;?#37327;长链分子保证了纳米粒子在材料中的分散;(b)在此基础上,通过在纳米粒子表面修?#25105;?#23618;较密的短链接枝链、并通过改变短接枝链的类型来实现对纳米粒子与体相高分子之间相互作用的有效调节,从而实现对复合材料力学性能的优化。

他们在模拟工作中对均聚物及两嵌段共聚物两种不同短链接枝类型体系进行了系统研究,结果表明(1)在均聚物短接枝体系中,通过改变短接枝链与体相高分子的界面相互作用强度,可以实现在拉伸应变初期对复合材料中的空穴形成机理的调控,从而实现对材料屈服行为及韧性的调控。在强界面相互作用体系,空穴只在远离界面处且在材料屈服后快速生成;而在弱界面相互作用体系,空穴的产生发生在材料屈服前,并且由于纳米粒子的分撒性分布,空穴的后期增长缓慢,大幅增加了材料的韧性。(2)在两嵌段短接枝体系中,外层嵌段保持和体相基底高分子链的相亲性,而通过调控里层嵌段与纳米粒子的相互作用强度以及里层嵌段的分子链刚性,可以实现对材料应变软化行为的有效调控。该工作指出,无论是通过调节均聚物短接枝层与体相高分子的?#39318;?#29992;(第(1)部分工作),还是通过利用里层弱相互作用嵌段的链刚性(熵作用,第(2)部分工作),均可实现材料中空穴生成机理及生长速?#23454;?#26377;效调控,从而实现对材料韧性的调控。


图1.均聚物?#25237;?#25509;枝链体系:短接枝链与体相高分子(a)化学组分相同、(b)具有弱相互作用体系在拉伸应变下的示意图;(c)上述两种不同体系的应力-应变曲线。


图2.具有不同表面相互作用的均聚物?#25237;?#25509;枝链体系:(a) 拉伸前体系中局部模量在纳米粒子周围的分布。弱作用体系(HETERO)中在短接枝链与高分子基?#23383;?#38388;存在低模量区;(b)不同应变下的空穴增长速率。强作用(HOMO)体系与纯聚合物体系相同在屈服前空穴一旦产生便快速增长并当材料屈服时达到顶峰,而弱作用体系中空穴产生在模量?#31995;?#30340;短接枝链与高分子基?#23383;?#38388;的界面处,同时纳米粒子的分散性分布大幅减缓了空穴?#32435;?#38271;速率,从而提高了材料的韧性。


图3.左图为两嵌段?#25237;?#25509;枝链体系在拉伸应变下的示意图?#28023;?#24038;上)里层嵌段(绿色)与纳米粒子(红色)具有弱相互作用;(左下)里层嵌段(橘色)与纳米粒子(红色)具有强相互作用。右图为两个不同体系的应力-应变曲线,弱作用体系在应变软化区体现出二次屈服现象,大幅提高了材料韧性。


图4.两嵌段?#25237;?#25509;枝链体系中:(a)拉伸前体系中局部模量在纳米粒子周围的分布。强弱作用体系在接枝层/高分子基底间(3 < r < 5)并无明显差别,而弱作用体系(WCA,   = 0.1)在短链接枝层存在明显的低模量区;(b)不同应变下的空穴增长速率。在应变软化区(0.2 < < 0.4)弱作用体系的空穴增长速率明显低于强作用(  = 1.0,  = 3.0)体系?#27426;?#25509;枝链(c)里层嵌段与(d)外层嵌段在纳米粒子表面的高度对应变的响应。在应变软化区弱作用体系中的里层嵌段极易被拉脱而发生链取向(见图1右上插图),并在应变 = 0.3出现最大化,导致体系发生二次屈服(见图1右侧绿色应力-应变曲线)。

以上工作发表在近期的(Macromolecules, 2019, 52(19), 7353-7360)以及(Phys.Chem.Chem.Phys. 2019, 21(13), 7115-7126)上,吉林大学博士施睿为文章第一作者,钱虎军教授和吕中元教授为共同通讯作者。以上研究得到了国家自然科学基金重点及面上项目的资助。该理论模拟工作的结果为相关聚合物/纳米粒子复合材料的性能优化与设计提供了有益理论参考。

来源:高分子科技

相关信息
   标题 相关频次
 #纳米周报#新声学技术——纳米材料结构研究的福音
 1
 《先进材料》报道华理超分子化学研究新进展
 1
 《自然》《科学》一周(12.07-12.13)材料科学前沿要闻
 1
 《自然》《科学》一周(5.15-5.21)材料科学前沿要闻
 1
 《自然》《科学》一周(8.31-9.06)材料科学前沿要闻
 1
 5083铝合金在400℃的超塑性变形行为和硬化特征
 1
 -50℃!南开大学陶占良、陈军院士?#27492;?#31995;离子电池使用下限温度新纪录!
 1
 Nature:新型生物弹性光学材料,用于柔性反射式显示
 1
 Sci. China Mater.:光焊接纳米粒子——从金属溶胶到自支撑、导电性金属薄膜
 1
 Science:纳米粒子新成?#34180;?#28151;合金属纳米粒子
 1
 Science:纳米粒子中层次结构复杂性的突发现象及其组装
 1
 北京大学宛新华教授课题组《Nat. Commun. 》:提出模拟磁选矿的?#20013;?#20998;离新策略
 1
 表面活性剂对电子束制备纳米镍粉的影响
 1
 磁场对纳米催化剂的活性调控研究获进展
 1
 磁性纳米粒子可提高太阳能电池的性能
 1
 从分子工具箱到光开关荧光聚合物纳米粒子工具箱
 1
 单晶铜薄膜纳米压痕过程的分子动力学模拟
 1
 等离子激元光子新进展
 1
 等通道变形高纯铝的显微组织与力学性能
 1
 顶刊动态 | AM/AFM/Angew等纳米材料最新学术进展汇总
 1
 顶刊动态 | Nature子刊/AM等生物材料前沿最新科研成果精选
 1
 顶刊动态|AFM/JACS/Small等一周中国学术进展汇总(5.26-6.1)
 1
 对冷拉拔铜锡合金导线显微组织的分子动力学模拟
 1
 俄学者发明简单便宜方法获取立?#38477;?#21270;硼纳米粒子 制出复合金属陶瓷材料
 1
 二氧化碳高效转化为燃料——电催化剂对纳米粒子的关键作用
 1
 国外纳米前沿最新动态(0907—0920):自组装纳米颗粒|纳米扭矩传感器
 1
 哈尔滨工业大学在微流控领域取得新进展
 1
 合肥研究院等发现金属纳米粒子的同分异构现象
 1
 合肥研究院在团簇结构研究中取得进展
 1
 化物所新发现 “动态尺寸效应”决定纳米粒子稳定机制
 1
 吉林大学李昊龙教授和长春应化所陈全研究员合作:超小粒子对聚合物复合体系中链缠结的稀释效应
 1
 吉林大学孙俊奇教授课题组:聚电解质复合物纳米粒子增强增韧的高强度自修复与可循环利用水凝胶
 1
 加工银的新技术可能决定电子产品发展
 1
 加入碳化钛纳米粒子 纳米焊?#31185;平?075铝合金焊接难题
 1
 胶体纳米粒子的新革命:光热解技术
 1
 今日最新Nature: 从四个维度观测晶体成核
 1
 警惕纳米污染,新?#22270;?#27979;传感器问世
 1
 科学家利用激光气泡即可操纵纳米粒子
 1
 科学家首次观测纳米粒子中23000个原子精确位置
 1
 冷矫直对压力容器用钢力学性能的影响
 1
 毛细管电泳非接触电导分离检测金属氧化物纳米粒子
 1
 纳米粒子:让病菌“无处遁形”
 1
 纳米粒子结合又有新方式
 1
 纳米粒子润滑油的抗磨减摩机理
 1
 纳米粒子氧化机理新发现 为发展抗腐蚀材料“另辟蹊径”
 1
 镍纳米粒子催化剂彻底征服CO2不是梦
 1
 日?#31350;?#21457;制造合金纳米粒子新方法
 1
 瑞士开发出能控?#39057;?#20010;粒子的“纳米阀门”
 1
 使用非线性光谱技术研究纳米粒子
 1
 天然纳米粒子存在左、右?#20013;?/a>
 1
一周新闻 Top 10
新品发布
专题报道
幸运双星怎么玩
怎么用点评赚钱 低门槛的赚钱项目 知道银行卡号怎样赚钱吗 九游有什么赚钱的游戏 网上推销东西赚钱 赚钱鹊桥 赚钱手游大全 呱呱赚怎么分享赚钱 独生子 身体不好 也不是很会赚钱 快递自提小哥赚钱吗 新疆矿山赚钱吗 在什么地方干活最赚钱 网购软件靠什么赚钱 京东平台怎么赚钱的 听音乐赚钱中文网站 斗鱼直播权限怎么赚钱